4 research outputs found

    Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea

    Full text link
    Purpose: This study analyzes the effects of aquaculture activities in open seawater in the north-western coastal waters of the Mediterranean Sea. It is the first of its kind to be based on benthic flux data gathered in situ below fish farms for this particular area. Materials and methods: Samples were collected on four sampling campaigns over a 1-year cycle under a Sparus aurata fish farm facility where benthic fluxes were measured in situ using light and dark benthic chambers. Bottom water and sediment samples were also collected. Data were compared to those for a nearby control station. Results and discussion: Significant differences were found (ANOVA, p < 0. 05) between concentrations of organic matter (OM), total phosphorus and redox potentials in sediments located under the cages and those of the control station. The consumption of dissolved oxygen (DO) by sediment and positive ammonium (NH4 +) fluxes was stimulated by OM content, with correlations of r = -0. 60 (p < 0. 01) and r = 0. 70 (p < 0. 01), respectively. The OM content of sediments was found to be consistently higher under the cages than at the control station, with the highest value (1. 8 ± 0. 7 %) under the cages observed during the early summer; values of DO and NH4 + fluxes were -64 ± 17 and 12. 7 ± 1. 0 mmol m-2 day-1, respectively. PO4 3- fluxes were consistently higher in the fish farm sediments (between 0. 58 and 0. 98 mmol m-2 day-1) than those observed at the control station. Nitrate (NO3 -) fluxes were found to be consistently negative due to denitrification occurring in the sediments and were related to the concentration of NO3 - in bottom waters (r = 0. 92, p < 0. 01). Si fluxes were shown to be associated with water temperature (r = 0. 59, p < 0. 05). Conclusions: The results imply that sediments located below cages accumulate organic matter originating from aquaculture activities, especially during summer months when this activity increases. Sediments undergo biogeochemical changes that mainly affect fluxes of DO, NH4 + and soluble reactive phosphorus, although these do not seem to have a significant impact on the quality of the water column due to the hydrodynamic characteristics of the area. © 2012 Springer-Verlag.We would like to thank the Caja del Mediterraneo for a predoctoral fellowship fund for this research and Antonio Asuncion Acuigroup Maremar manager for the facilities and support in conducting the study. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. We are grateful for the valuable comments of the anonymous reviewers on previous versions of the manuscript.Morata Higón, T.; Sospedra, J.; Falco Giaccaglia, SL.; Rodilla Alama, M. (2012). Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea. Journal of Soils and Sediments. 12(10):1623-1632. doi:10.1007/s11368-012-0581-2S162316321210APHA, AWWA, and WEF (2005) Standard methods for the examination of water wastewater, 21st edn. American Public Health Association, WashingtonAksu M, Kocatas A (2007) Environmental effects of the three fish farms in Izmir Bay (Aegean Sea-Turkey) on water column and sediment. Rapport du 38e Congrés de la Commission Internationale Pour L’exploration Scientifique de la Mer Méditerranée 38, 414Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. Centre National pour l’Explotation des Oceans, BrestArocena R, Conde D (1999) Sedimento. Métodos en ecología de aguas continentales. Universidad de la República, Montevideo, pp 40–52Asociación Empresarial de Productores de Cultivos Marinas (APROMAR) (2010) La Acuicultura Marina de Peces en España, pp. 69Baumgarten MGZ, Rocha JM, Niencheski LFH (1996) Manual de análises em oceanografia química, Rio GrandeBelias C, Dassenakis M, Scoullos M (2007) Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Mar Chem 103:266–275Berelson WM, McManus J, Coale KH, Johnson KS, Burdige D, Kilgore T, Colodner D, Chavez F, Kudela R, Boucher J (2003) A time series of benthic flux measurements from Monterey Bay, CA. Cont Shelf Res 23:457–481Black KD, McDougall N (2002) Hydrography of four Mediterranean marine cage sites. J Appl Ichthyol 18:129–133Borja A, Rodríguez JG, Black K, Bodoy A, Emblow C, Fernandes TF, Forte J, Karakassis I, Muxika I, Nickell TD, Papageorgiou N, Pranovi F, Sevastou K, Tomassetti P, Angel D (2009) Assessing the suitability of a range of benthic indices in the evaluation of environmental impact of fin and shellfish aquaculture located in sites across Europe. Aquaculture 293:231–240Cermelj B, Ogrinc N, Faganeli J (2001) Anoxic mineralization of biogenic debris in near-shore marine sediments (Gulf of Trieste, northern Adriatic). Sci Total Environ 266:143–152Dell’Anno A, Mei ML, Pusceddu A, Danovaro R (2002) Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Mar Pollut Bull 44:611–622Dosdat A (2001) Environmental impact of aquaculture in the Mediterranean: nutritional and feeding aspects. Environmental impact assessment of Mediterranean aquaculture farms. Cah Options Méditerr CIHEAM-FAO 55:23–36Ferrón S, Ortega T, Forja JM (2009) Benthic fluxes in a tidal salt marsh creek by fish farm activities: Río San Pedro (Bay of Cádiz, SW Spain). Mar Chem 113:50–62Freitas U, Niencheski LFH, Zarzur S, Manzolli RP, Vieira JPP, Rosa LC (2008) Influência de um cultivo de camaraô sobre o metabolismo béntico e a qualidade da agua. Rev Bras Eng Agríc Ambient 12:293–301Hall POJ, Holby O, Kollberg S, Samuelsson MO (1992) Chemical fluxes and mass balances in a marine fish cage farm: IV. Nitrogen. Mar Ecol Prog Ser 89:81–91Hargrave B (2005) Environmental effects of marine finfish aquaculture. The handbook of environmental. chemistry, vol. 5. Part M. Springer, BerlinHargrave BT, Phillips GA, Doucette LI, White MJ, Milligan TG, Wildish DJ, Cranston RE (1997) Assessing benthic impacts of organic enrichment from marine aquaculture. Water Air Soil Pollut 99:641–650Heilskov AC, Holmer M (2001) Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES J Mar Sci 58:427–434Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590Holby O, Hall POJ (1991) Chemical fluxes and mass balances in a marine fish cage farm. 11. Phosphorus. Mar Ecol Prog Ser 70:263–272Holby O, Hall POJ (1994) Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture 120:305–318Jackson C, Preston N, Thompson PJ (2004) Intake and discharge nutrient loads at three intensive shrimp farms. Aquacult Res 35:1053–1061Karakassis I, Tsapakis M, Hatziyanni E (1998) Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Mar Ecol Prog Ser 162:243–252Kaymakci A, Aksu M, Egemen O (2010) Impacts of the fish farms on the water column nutrient concentrations and accumulation of heavy metals in the sediments in the eastern Aegean Sea (Turkey). Environ Monit Assess 162:439–451Lorenti M, De Falco G (2004) Measurements and characterization of abiotic variables. In: Gambi MC, Diappiano M (eds) Mediterranean marine benthos: a manual of methods for its sampling and study. Societa Italiana di Biologia Marina, Genova, pp 1–37Maldonado M, Carmona MC, Echeverría Y, Riesgo A (2005) The environmental impact of Mediterranean cage fish farms at semi-exposed locations: does it need a re-assessment? Helgol Mar Res 59:121–135Mantzavrakos E, Kornaros M, Lyberatos G, Kaspiris P (2007) Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination 210:110–124Mazzola A, Mirto S, La Rosa T, Fabiano M, Danovaro R (2000) Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES J Mar Sci 57:1454–1461Molina L, Vergara JM (2005) Impacto ambiental de jaulas flotantes: estado actual de conocimientos y conclusiones prácticas. Bol Inst Esp Oceanogr 21:75–81Morán XAG, Estrada M (2005) Winter pelagic photosynthesis in the NW Mediterranean Deep-Sea. Research I 52:1806–1822Neofitou N, Klaoudatos S (2008) Effect of fish farming on the water column nutrient concentration in a semi-enclosed gulf of the Eastern Mediterranean. Aquac Res 39:482–490Niencheski LF, Jahnke RA (2002) Benthic respiration and inorganic nutrient fluxes in the estuarine región of Patos Lagoon (Brazil). Aquat Geochem 8:135–152Nizzoli D, Bartoli M, Viaroli P (2007) Oxygen and ammonium dynamics during a farming cycle of the bivalve Tapes philippinarum. Hydrobiologia 587:25–36Pergent-Martini C, Boudouresque CF, Pasqualini V, Pergent G (2006) Impact of fish farming facilities on Posidonia oceanica meadows: a review. Mar Ecol 27:310–319Pitta P, Karakassis I, Tsapakis M, Zivanovic S (1999) Natural versus mariculture induced variability in nutrients and plankton in the Eastern Mediterranean. Hydrobiologia 391:181–194Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Interscience, New YorkRiise JC, Roos N (1997) Benthic metabolism and the effects of bioturbation in a fertilized polyculture fish pond in northeast Thailand. Aquaculture 150:45–62Rodríguez J (1999) Ecología. Ed. Pirámide. pp 411Sakamaki T, Nishimura O, Sudo R (2006) Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Estuar Coast Shelf Sci 67:653–663Sarà G, Scilipoti D, Milazzo M, Modica A (2006) Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics. Mar Ecol Prog Ser 313:261–270Shepard FP (1954) Nomenclature based on sand-silt-clay relations. J Sediment Petrol 24:151–158Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcalá M, Vaqué D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. BG 7:1543–1586Warnken KW, Gill GA, Lehman R, Dellapenna T, Allison MA (2002) The effects of shrimp trawling on sediment oxygen demand and the release of trace metals and nutrients from estuarine sediments. Estuar Coast Shelf Sci 57:25–42Yucel-Gier G, Kucuksezgin F, Kocak F (2007) Effects of fish farming on nutrients and benthic community structure in the Eastern Aegean (Turkey). Aquac Res 38:256–26

    Technical risks of offshore structures

    Get PDF
    Offshore areas are rough and high energy areas. Therefore, offshore constructions are prone to high technical risks. This chapter elaborates on the technical risks of corrosion and biofouling and technical risks through mechanical force. The expected lifetime of an offshore structure is to a great extent determined by the risk of failures through such risks. Corrosion and biofouling threaten the robustness of offshore structures. Detailed and standardized rules for protection against corrosion of offshore structures are currently lacking. There is a need for an accepted uniform specification. A major technical risk of a combined wind-mussel farm is that of a drifting aquaculture construction that strikes a wind turbine foundation. We investigate two scenarios related to this risk: (1) Can a striking aquaculture construction cause a significant damage to the foundation? (2) If a drifting aquaculture construction gets stuck around a turbine foundation and thus increases its surface area, can the foundation handle the extra (drag) forces involved? A preliminary qualitative assessment of these scenarios leads to the conclusion that a drifting mussel or seaweed farm does not pose a serious technical threat to the foundation of a wind farm. Damage to the (anticorrosive) paint of the turbine foundation is possible, but this will not lead to short term structural damage. Long term corrosion and damage risks can be prevented by taking appropriate maintenance and repair actions. Contrarily to mussel or seaweed farms, the impact/threat of a drifting fish farm on structural damage to a wind foundation depends on type, size and the way of construction of the fish cages. The risk of extra drag force due to a stuck aquaculture construction relates particularly to jacket constructions because any stuck construction may lead to (strong) increase of the frontal surface area of the immersed jacket structure and thereby give increased drag forces from currents or waves. To ensure an optimal lifetime and lower operational costs maintenance aspects of materials for both offshore wind and aquaculture constructions should be taken into account already in the design phase of combined infrastructure
    corecore